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LETTER TO THE EDITOR 

Energy dissipation and Kolmogorov law in turbulent flows 

Roberto Benzit, Marcello Vitalettif and Angelo Vulpianif 
t Istituto di Fisica dell’Atmosfera, CNR Roma, Italy 
$ Istituto di Fisica ‘G Marconi’, University of Rome, Italy 

Received 8 July 1980 

Abstract. We show that energy dissipation is Reynolds number independent in three- 
dimensional turbulent flows. We obtain the small-scale Kolmogorov spectrum without any 
particular assumption on energy dissipation, using an approach developed in a previous 
paper. 

In 1941 Kolmogorov formulated his theory on the small-scale dynamics of turbulent 
flows using two principal assumptions (Monin and Yaglom 1975): 

(a) energy transport among all the scales of a turbulent flow is local in phase space 
(in other words small eddies are only advected by large eddies); 

(b) far from the dissipation range, the average energy dissipation (E) and the scale of 
motion are the only parameters describing the statistical properties at that scale. 

The assumption (b) is strongly based on the experimental fact (Kuo and Corrsin 
197 1) that (E) is Reynolds number independent for sufficiently high Reynolds numbers. 

From assumptions (a) and (b), and neglecting fluctuations in energy dissipation, it is 
easy to show by dimensional consideration that the energy spectrum E(K) of a 
turbulent flow is in the inertial range 

E ( K ) =  C ( E ) ~ ’ ~ K - ~ ’ ~  (1) 
where C is a universal quantity. 5: E(K) d K  is the kinetic energy of the flow per unit 
volume. We can think of E ( K )  as the average kinetic energy at scale 1 = 1/K. 

In a recent work two of the present authors (Benzi and Vulpiani 1980, hereafter 
referred to as I), using a simple and new idea on the dynamics of a turbulent flow, have 
computed the correction to the Kolmogorov law due to the intermittence phenomenon. 
In I, we used both assumptions (a) and (b), i.e. we estimated the correction to equation 
(1) by computing the statistical properties of energy dissipation and using the Kolmo- 
gorov theory as the zeroth approximation. In this Letter we shall investigate whether 
assumption (b) is really needed to compute the power spectrum of a fully developed 
turbulent flow. Note that assumption (b) is the only experimental fact entering both the 
Kolmogorov theory and the estimate of its corrections. 

It is clear that if we remove assumption (b) we cannot obtain the Kolmogorov 
spectrum, using the standard theoretical arguments given in the literature. We will now 
show that the physical model underlying our approach I is enough to reproduce the 
Kolmogorov spectrum in first approximation without any particular assumption on the 
energy dissipation. Obviously, we shall obtain at the end of our computation that 
energy dissipation is Reynolds number independent. 
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One of the most important physical quantities of a turbulent flow is the gradient of 
the velocity field. One usually thinks of a turbulent flow as having many scales of 
motion I,, lo = L being the external scale of energy input of the flow and 1, = A -“L, 
where A is a number greater than one. For any given scale we assume that the dynamics 
can be described in terms of two different configurations (Tennekes 1968, Novikov and 
Stewart 1964, Frisch et a1 1978, and I): 

(1) ‘laminar configurations’, characterised by low values of the gradient of the 
velocity field; 

(2) ‘intermittent configurations’, characterised by high values of the gradient of the 
velocity field. 

In other words, we shall say that when a flow at scale 1, has a velocity gradient equal 
to VIL (where V is the typical large-scale velocity) it is in a laminar configuration, while 
when it has a velocity gradient equal to V;/l,, (where VL is the characteristic 
intermittent velocity at scale 1,) we shall use the expression intermittent configurations. 
We speak of two different configurations because the transport properties of a 
turbulent flow are strongly linked to the gradient of its velocity field, or in other words to 
its vorticity. 

Let P, be the probability that the flow is in an intermittent configuration. By 
definition, the average value at scale 1, of any increasing function f (  - ) of the gradient of 
the velocity field is given by 

because Vbll, >> V/L (Frisch et a1 1978). 
Our first step is to find model equations for V, and P,. We concentrate our 

attention first on V;, 
As long as the effects of viscosity on the dynamics of the scale 1, are very weak, there 

is no energy dissipation into heat. It is! then reasonable to assume that in a first 
approximation all the characteristic intermittent velocities are the same, i.e. 

v:, = v (3) 
(an assumption like this was previously used by Saffman 1968). Therefore the average 
velocity gradient at the scale 1, is of order (P,V2)1/2/ln = VPA/2/1,. The quantity 
V i  (P,V2)1/2 will be called the typical velocity at scale I,. The difference between the 
typical velocity and the characteristic velocity for a given scale is the following: the 
characteristic velocity refers to the instantaneous input of energy into the scale I,, while 
the typical velocity refers to the average input of energy. 

To compute P, we follow the idea used previously in I. We think of the gradient of 
the velocity field SV, as satisfying the following system of stochastic differential 
equations: 

dSV, =F,[{SV,}]dt+a, dW(t )  (4) 
where d W(t) is a Wiener process. 

It is possible to show (Ventzel and Freidlin 1970) that the stochastic process given by 
equation (4) is equivalent to a Markov chain whose states are the stationary points (fixed 
points and limit cycles) of the deterministic equation 

dSV,/dt = F,[{SV,}]. 

It follows that the stochastic process SV, jumps at random times between the stable 
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(laminar) and unstable (intermittent) stationary states of the system (for more detailed 
explanation see I). 

Using ergodic arguments it is possible to show that the probability of being in an 
intermittent configuration at scale 1, is equal to the average time 7, the flow spends in an 
intermittent configuration divided by the average time T of a laminar configuration: 

P, = r,/T. ( 5 )  

To compute 7, and T we can use the following approach. For any given scale the 
characteristic time of the evolution of the flow dynamics is strongly connected to the 
gradient of its velocity field. Therefore we can estimate 7, and T to be given 
respectively by the expressions 

7,  = ( vP:/z / l , ) - l ,  T = (V/L)- l .  (6) 

Note that all the estimates given by energy arguments agree with this intuitive idea 
(Joseph 1976). Inserting (6) into ( 5 )  we obtain (in the inertial range) 

P, = ( i , / ~ ) ~ / ~ .  (7) 

We can now use equation (7) to estimate the energy dissipation of the flow. By its very 
definition (e) is given by 

(8) 
P,V2 

(€)=U 1 -. 
n = O  1: 

The value of N refers to the scale IN at which the local Reynolds number is of order one. 
For any given scale the local Reynolds number R,  can be computed using the typical 
velocity previously defined: 

where R is the Reynolds number of the whole flow. From equation (9) we obtain 

or in other words 
1, = LR-3/4 

i.e. 

N = !(ln R)/(ln A ) .  

Using equations (10) and (11) in equation (8) we easily obtain 

Equation (12) shows that ( E )  is a Reynolds independent quantity expressed in terms of 
the large-scale structure of the flow. 

We can now find the Kolmogorov law from the preceding results (equations (2), (3) 
and (7)). 
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We can define the average kinetic energy E(Kn)  at scale In  : 
K,+1 lKn E ( K )  dK = PnV:. 

Then 
a3 

PnV: =I E ( K )  dK. 
n 0 

From equation (13) it is possible to write the following equation for E(Kn):  

E&) = P ~ v ~ K ; ' .  (14) 

E ( K n ) a  (ln/L)2/3 V 2 K l 1  = ( V2/L2/3)K;5/3 

From equation (7) we easily reach our result using equation (14): 

(15) 

in the inertial range. 

without any assumption on the average energy dissipation of the flow. 

field defined as 

Equations (15) and (12) show that it is possible to obtain the Kolmogorov spectrum 

Using our results, we can also estimate the Kurtosis F of the gradient of the velocity 

F = ((e V / 8 ~ ) ~ ) / ( ( 8  V / ~ X ) ~ ) ~ .  

Because the largest contributions to the velocity gradient are in the dissipative scale l,, 
we obtain from equations (10) and (2) 

The experimental value of F is (Van Atta and Chen 1970) 

F-R", CY =0*6,  

in agreement with our result. 
We now extend our previous result to the two-dimensional case. As is well known 

for a flow in two dimensions, the entropy is an integral of motion. This means that our 
previous assumption equation (3) cannot be true in this case even in a first approxima- 
tion. We can however estimate Vk, just assuming that entropy is not dissipated from 
one scale to another as long as viscous effects are small. If this is the case, we can 
immediately write 

v:p; = V 2 / L 2  

i.e. 

vi = (ln/L) v. 
Substituting equation (17) into the formulation of P,,, we obtain 

This means that P,, is a constant for all the scale. From this result we easily obtain 

E(&) Pn VZK,' K i 3 .  (18) 
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Equation (18) has been derived in a number of different ways by many authors 
(Batchelor 1969, Kraichnan 1967). 

In this Letter, following simple ideas on the dynamics of a turbulent flow, we obtain the 
Kolmogorov spectrum for the three- and two-dimensional turbulence. Our result does 
not need any particular assumption on energy dissipation. Indeed, one of our theoreti- 
cal results is that energy dissipation is estimated to be a Reynolds number independent 
quantity. 
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